Gröntvedt
2013-02-23, 11:21
Eccentric Exercise Increases Satellite Cell Content in Type II Muscle Fibers.
Cermak NM, Snijders T, McKay BR, Parise G, Verdijk LB, Tarnopolsky MA, Gibala MJ, VAN Loon LJ.
Abstract
INTRODUCTION:
Satellite cells (SCs) are of key importance in skeletal muscle tissue growth, repair, and regeneration. A single bout of high-force eccentric exercise has been demonstrated to increase mixed muscle SC content after 1-7 d of postexercise recovery. However, little is known about fiber type-specific changes in SC content and their activation status within 24 h of postexercise recovery.
METHODS:
Nine recreationally active young men (23 ± 1 yr) performed 300 eccentric actions of the knee extensors on an isokinetic dynamometer. Skeletal muscle biopsies from the vastus lateralis were collected preexercise and 24 h postexercise. Muscle fiber type-specific SC content and the number of activated SCs were determined by immunohistochemical analyses.
RESULTS:
There was no difference between Type I and Type II muscle fiber SC content before exercise. SC content significantly increased 24 h postexercise in Type II muscle fibers (from 0.085 ± 0.012 to 0.133 ± 0.016 SCs per fiber, respectively; P < 0.05), whereas there was no change in Type I fibers. In accordance, activation status increased from preexercise to 24 h postexercise as demonstrated by the increase in the number of DLK1+ SCs in Type II muscle fibers (from 0.027 ± 0.008 to 0.070 ± 0.017 SCs per muscle fiber P < 0.05). Although no significant changes were observed in the number of Ki-67+ SCs, we did observe an increase in the number of proliferating cell nuclear antigen-positive SCs after 24 h of postexercise recovery.
CONCLUSION:
A single bout of high-force eccentric exercise increases muscle fiber SC content and activation status in Type II but not Type I muscle fibers.
Cermak NM, Snijders T, McKay BR, Parise G, Verdijk LB, Tarnopolsky MA, Gibala MJ, VAN Loon LJ.
Abstract
INTRODUCTION:
Satellite cells (SCs) are of key importance in skeletal muscle tissue growth, repair, and regeneration. A single bout of high-force eccentric exercise has been demonstrated to increase mixed muscle SC content after 1-7 d of postexercise recovery. However, little is known about fiber type-specific changes in SC content and their activation status within 24 h of postexercise recovery.
METHODS:
Nine recreationally active young men (23 ± 1 yr) performed 300 eccentric actions of the knee extensors on an isokinetic dynamometer. Skeletal muscle biopsies from the vastus lateralis were collected preexercise and 24 h postexercise. Muscle fiber type-specific SC content and the number of activated SCs were determined by immunohistochemical analyses.
RESULTS:
There was no difference between Type I and Type II muscle fiber SC content before exercise. SC content significantly increased 24 h postexercise in Type II muscle fibers (from 0.085 ± 0.012 to 0.133 ± 0.016 SCs per fiber, respectively; P < 0.05), whereas there was no change in Type I fibers. In accordance, activation status increased from preexercise to 24 h postexercise as demonstrated by the increase in the number of DLK1+ SCs in Type II muscle fibers (from 0.027 ± 0.008 to 0.070 ± 0.017 SCs per muscle fiber P < 0.05). Although no significant changes were observed in the number of Ki-67+ SCs, we did observe an increase in the number of proliferating cell nuclear antigen-positive SCs after 24 h of postexercise recovery.
CONCLUSION:
A single bout of high-force eccentric exercise increases muscle fiber SC content and activation status in Type II but not Type I muscle fibers.