handdator

Visa fullständig version : Effekt av pistaschnötter på prestation och inflammation


King Grub
2014-11-20, 08:59
OBJECTIVES:

Pistachio nut ingestion (3 oz./d, two weeks) was tested for effects on exercise performance and 21-h post-exercise recovery from inflammation, oxidative stress, immune dysfunction, and metabolite shifts.

METHODS:

Using a randomized, crossover approach, cyclists (N = 19) engaged in two 75-km time trials after 2-weeks pistachio or no pistachio supplementation, with a 2-week washout period. Subjects came to the lab in an overnight fasted state, and ingested water only or 3 oz. pistachios with water before and during exercise. Blood samples were collected 45 min pre-exercise, and immediately post-, 1.5-h post-, and 21-h post-exercise, and analyzed for plasma cytokines, C-reactive protein (CRP), F2-isoprostanes (F2-IsoP), granulocyte phagocytosis (GPHAG) and oxidative burst activity (GOBA), and shifts in metabolites.

RESULTS:

Performance time for the 75-km time trial was 4.8% slower under pistachio conditions (2.84±0.11 and 2.71±0.07 h, respectively, P = 0.034). Significant time effects were shown for plasma cytokines, CRP, F2-IsoP, GPHAG, and GOBA, with few group differences. Metabolomics analysis revealed 423 detectable compounds of known identity, with significant interaction effects for 19 metabolites, especially raffinose, (12Z)-9,10-Dihydroxyoctadec-12-enoate (9,10-DiHOME), and sucrose. Dietary intake of raffinose was 2.19±0.15 and 0.35±0.08 mg/d during the pistachio and no pistachio periods, and metabolomics revealed that colon raffinose and sucrose translocated to the circulation during exercise due to increased gut permeability. The post-exercise increase in plasma raffinose correlated significantly with 9,10-DiHOME and other oxidative stress metabolites.

CONCLUSIONS:

In summary, 2-weeks pistachio nut ingestion was associated with reduced 75-km cycling time trial performance and increased post-exercise plasma levels of raffinose, sucrose, and metabolites related to leukotoxic effects and oxidative stress.

DISCUSSION:

Contrary to our hypothesis, data from this randomized, crossover study showed that 2-weeks ingestion of pistachio nuts (3 oz./day including the day of the cycling time trial) by trained cyclists impaired performance 4.8% during a 75-km cycling time trial. Although the patterns of change for traditional biomarkers for exercise-induced inflammation and oxidative stress were similar between pistachio and no-pistachio trials, metabolomics revealed trial differences for 19 metabolites highlighted by the post-exercise presence of raffinose, sucrose, myo-inositol, and the leukotoxin diol 9,10-DiHOME in the blood compartment of athletes during the pistachio trial.

To summarize, in this metabolomics-based study we report an entirely novel finding that gut-derived raffinose, sucrose, and myo-inositol were present in the circulation of endurance athletes following the combination of 2-weeks pistachio nut ingestion and prolonged and intensive exertion. Pistachio ingestion was related to impaired 75-km cycling performance in overnight fasted cyclists, and could be due to raffinose associated increases in 9,10-DiHOME, a leukotoxin that may negatively impact mitochondrial function

Together, these data support the value of utilizing metabolomics-based procedures in sports nutrition studies, and call into question the dietary practice of ingesting foods high in raffinose prior to long duration, intense exercise.

PLoS One. 2014 Nov 19;9(11):e113725. Influence of Pistachios on Performance and Exercise-Induced Inflammation, Oxidative Stress, Immune Dysfunction, and Metabolite Shifts in Cyclists: A Randomized, Crossover Trial.

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0113725